- fixed centralizer
- зажимающий люнет (податчика буровой машины)
Англо-русский словарь промышленной и научной лексики. 2014.
Англо-русский словарь промышленной и научной лексики. 2014.
Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… … Wikipedia
Classification of finite simple groups — Group theory Group theory … Wikipedia
Mathieu group — Group theory Group theory … Wikipedia
Reductive dual pair — In the mathematical field of representation theory, a reductive dual pair is a pair of subgroups (G,G ′) of the isometry group Sp(W) of a symplectic vector space W, such that G is the centralizer of G ′ in Sp(W) and vice versa, and these groups… … Wikipedia
Conway group — Group theory Group theory … Wikipedia
Maximal torus — In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to… … Wikipedia
Cayley–Hamilton theorem — In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Hamilton) states that every square matrix over the real or complex field satisfies its own characteristic equation.More precisely; if A is… … Wikipedia
Janko group J1 — In mathematics, the smallest Janko group, J1, of order 175560, was first described by Zvonimir Janko (1965), in a paper which described the first new sporadic simple group to be discovered in over a century and which launched the modern theory of … Wikipedia
Frobenius group — In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non trivial elementfixes more than one point and some non trivial element fixes a point. They are named after F. G. Frobenius. Structure The… … Wikipedia
Cartan subgroup — In mathematics, a Cartan subgroup of a Lie group or algebraic group G is one of the subgroups whose Lie algebrais a Cartan subalgebra. The dimension of a Cartan subgroup, and therefore of a Cartan subalgebra, is the rank of G .ConventionsThe… … Wikipedia
CA-group — In mathematics, in the realm of group theory, a group is said to be a CA group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA groups are of historical importance as an early example of … Wikipedia